
Copyright © 2020 Viscosity North America, Inc. All rights reserved.	

On the Third Day of 18c/19c, Viscosity Gave to me…

Hacking Oracle 19c RPM Installations

Technology Overview

Database: 18c / 19c

Company: Oracle Corporation

Topic: Oracle 19c RPM Installations

Viscosity can help with any
of your Database Upgrade
needs

Viscosity has performed numerous
zero-downtime database migrations
and upgrades over the years and has
a proven track record with business
critical and mission critical databases.

Viscosity’s Database Migration &
Upgrade Services can plan, upgrade,
validate and migrate all database
content - quickly and effectively with
our automated approach and proven
methodology.

Learn more about how you can
maintain and maximize your
investments at viscosityna.com or
email us at hello@viscosityna.com.

	

	 	 	 	 	
	
www.viscosityna.com
	

December 10, 2020

Oracle provides the preinstallation RPM for Oracle Database version 11g and later,
making the configuration and installation of Linux environments faster and easier.
They eliminate many of the tasks database and systems administrators perform to
provision a new database host—creating users and groups, installing packages and
dependencies, setting resource limits, and adjusting kernel parameters to satisfy
database requirements—and assure organizations that their database
environments are consistently (and properly!) built according to Oracle’s
recommendations.

Oracle introduced RPM-based installation of Oracle Database software with version
18c. In addition to creating and populating the Oracle Home, the RPM adds
database creation through a service configuration script. The configuration calls the
Database Configuration Assistant in the background and simplifies database
creation. The entire process is performed by root and doesn’t require interacting
with DBCA, either through its GUI or via a response file.

This reduces the effort for users that want a database quickly. You needn’t worry
about how or what to run, because it’s done for you. It also has implications if you
work with configuration management, deployment, and automation tools like
Ansible, Chef, Docker, Puppet, or Terraform. Configuring prerequisites, installing
software, and creating a database are reduced to three simple steps. This makes
Oracle database installation more consistent with what you may find from other
databases.

The ease and convenience of the Oracle RPM installation does come with some
limitations:

• Databases built from RPM are installed with predetermined directory
structures

• There is no option to create database storage under ASM
• The installation creates single-instance databases only
• The only packages available publicly are for Oracle Database 19.3.0

Enterprise Edition and Oracle Database 18.4.0 Express Edition. There is no
offering for Standard Edition, and references in documentation that once
suggested Standard Edition would eventually be available have been
removed.

• The process for creating databases with custom parameter and
configuration settings is not very obvious.

These limits may lead you to conclude that package-based Oracle installations are
only useful for quick and dirty database creation, and not for operational workflows
or “real” environments. The good news is RPM-based installations can be modified
and extended to address these limitations without too much effort, while
remaining automation-friendly! For example, Viscosity uses RPM-based	

	

Copyright © 2020 Viscosity North America, Inc. All rights reserved. 	

installations for building Docker images and enjoy the same flexibility and options found in “normal”
installations from archive.	

Introduction to RPM

An RPM is a bundled set of files and instructions to install and configure software on Linux systems. RPM
originally stood for Red Hat Package Manager, but is now ubiquitous across many Linux flavors. RPM can
be applied via the rpm command, but you may be more familiar working with them through the yum
package manager.

Installing software with a package manager has advantages - including simplicity, automation, and
consistency.

Applying an RPM is a single command and eliminates most, if not all, human interaction. This makes
installing software by RPM arguably safer, too. A single package file can be tracked and distributed
through a repository, managed by version control, and validated with a checksum.

Modern provisioning workflows for Oracle often end before database installation. Prepared systems are
handed off to database administrators, who complete the software installation and database creation
and configuration. In many shops this isn’t a frequent event and scripting the process may not make
sense. Most DBAs have installed a database or two. The process is relatively straightforward and
carefully documenting methods can take a backseat to other, more important and frequent tasks. Not to
mention that we have the Internet, home to 1,001 ways to install Oracle!

This leads to environments of bespoke installations where base operating systems are built from
configuration manifests, but databases aren’t. Human involvement means we can’t guarantee two
environments are identical. With package-based installation, setup and configuration is built in and
assures identical outcomes across systems with the same foundation. Database installation and creation
is easily adapted to existing automation without adding complex, database-specific instructions. This
ultimately leads to leaner processes with functionality similar to other databases.

Installation by RPM can also result in a smaller footprint and take less time to run as well. Packages can
be built to exclude unnecessary assets and the Oracle 18c Express Edition RPM is a great example—it
omits files and libraries for relinking the database binaries. The package installs Oracle “pre-linked” and
those libraries and their relinking operations aren’t needed. There is a potential downside to this I’ll
share later.

Basic Installation of Oracle by RPM
	
RPM installation is straightforward and well documented, by Oracle and on many blogs. Viscosity’s team
is no exception— Oracle 19c RPM Installation on OCI Free Tier and Installing the Oracle 19c RPM on
Docker part 1 and part 2!

Briefly: download assets, apply the preinstallation and installation RPM, and run the configuration.

	

Copyright © 2020 Viscosity North America, Inc. All rights reserved. 	

Download Assets
The Oracle Database RPM files for 19.3 Enterprise Edition and 18.4 Express Edition on Linux are available
for download from the Oracle Database Software Download page.

Complete Preinstallation Tasks
The database RPM still require a properly configured host. This is most easily accomplished with the
appropriate preinstallation RPM.

On Oracle Enterprise Linux the preinstallation packages are available locally.

yum -y install oracle-database-preinstall-19c

On other systems the preinstallation RPM must be downloaded. For Linux version 7, curl, install, and
remove the RPM file:

curl -o oracle-database-preinstall-19c-1.0-1.el7.x86_64.rpm
https://yum.oracle.com/repo/OracleLinux/OL7/latest/x86_64/getPackag
e/oracle-database-preinstall-19c-1.0-1.el7.x86_64.rpm
yum -y localinstall oracle-database-preinstall-19c-1.0-
1.el7.x86_64.rpm
rm oracle-database-preinstall-19c-1.0-1.el7.x86_64.rpm

For Oracle 18c, substitute the package name:

oracle-database-preinstall-18c-1.0-1.el7.x86_64.rpm

Install the Database Software
For installation, copy the Oracle Database RPM to a directory on the local system, cd to the directory,
and perform a local yum install. For Oracle 19c:

yum -y localinstall oracle-database-ee-19c-1.0-1.x86_64.rpm

	
There’s no need to run the orainstRoot.sh or root.sh scripts; directory ownership and permissions are
built in to the package.

The Oracle inventory is created at /opt/oracle/oraInventory and the Oracle Home under
/opt/oracle/product/19c/dbhome_1/.

	

Copyright © 2020 Viscosity North America, Inc. All rights reserved. 	

Installation of Oracle 18c XE is similar:

yum -y localinstall oracle-database-xe-18c-1.0-1.x86_64.rpm

	
The 18c Oracle Home is created as /opt/oracle/product/18c/dbhomeXE.

The RPM adds two additional files: a service file under /etc/init.d and a configuration file in
/etc/sysconfig. The service file facilitates creation and management of Oracle databases, including
starting, stopping, and restarting the database and listener.

Create a Database
With the software installed, the next step is to create a database with a default setup using the service
script with the configure option. For Oracle 19c:

/etc/init.d/oracledb_ORCLCDB-19c configure

For Oracle 18c:

/etc/init.d/oracle-xe-18c configure

This results in creation of standard database listener listening on port 1521, and a container database
with a single pluggable database.

The default 19c CDB is ORCLCDB and the PDB is ORCLPDB1.

The default 18c CDB is XE and the PDB is XEPDB1.

If you need a database quickly and aren’t interested in customizations, this is the end of the journey. For
the rest of us—those who want to alter the defaults, extend the limits of package-based installations, or
deploy Oracle software to different directory structures—this is the beginning!

Hacking RPM Installs
Adaptations to Oracle’s default RPM builds fall under two categories:

• Changes to database creation
• Changes to directory structure

18c Express Edition and 19c Enterprise Edition database creation is controlled by two files that contain
and control configurations. Altering defaults is done by changing these files prior to running the service
file to configure a database.

	

Copyright © 2020 Viscosity North America, Inc. All rights reserved. 	

Changing the Oracle Home and Oracle Inventory paths on 19c is done traditionally, by moving and
relinking the directories. Unfortunately, changing the Oracle Home for an 18c Express Edition database
isn’t an option. As noted before, the installation lacks libraries needed to relink the Oracle Home.
There’s no way of moving the files and relinking Oracle. (Of course, it’s unlikely you’ll need to change an
18c XE database home to match something different since 18c XE can only be installed from RPM.)

Basic Database Configuration Changes
There are two files of configuration in RPM-based installations. A very peculiar configuration file, and
the database service file.

The “Configuration” File
This file is located under /etc/sysconfig/oracledb_ORCLCDB-19c.conf for Oracle 19c and
/etc/sysconfig/oracle—xe–18c.conf for Oracle 18c. For being a configuration file, it contains far
fewer configuration options than you might anticipate:

#This is a configuration file to setup the Oracle Database.
#It is used when running '/etc/init.d/oracledb_ORCLCDB configure'.
#Please use this file to modify the default listener port and the
#Oracle data location.

LISTENER_PORT: Database listener
LISTENER_PORT=1521

ORACLE_DATA_LOCATION: Database oradata location
ORACLE_DATA_LOCATION=/opt/oracle/oradata

EM_EXPRESS_PORT: Oracle EM Express listener
EM_EXPRESS_PORT=5500

If you have a need to change these ports or the data file location, edit this file before running the
configure script.

The Service File
The service file—the script called to configure and manage Oracle—is the source of most configurations
you’d typically think of as “things to change.” Located under /etc/init.d/oracledb_ORCLCDB-19c
or /etc/init.d/oracle-xe-18c for Oracle 19c and 18c, respectively, the following entries appear
near the top:

	

Copyright © 2020 Viscosity North America, Inc. All rights reserved. 	

Setting the required environment variables
export ORACLE_HOME=/opt/oracle/product/19c/dbhome_1

export ORACLE_VERSION=19c
export ORACLE_SID=ORCLCDB
export TEMPLATE_NAME=General_Purpose.dbc
export CHARSET=AL32UTF8
export PDB_NAME=ORCLPDB1
export LISTENER_NAME=LISTENER
export NUMBER_OF_PDBS=1
export CREATE_AS_CDB=true

We can edit some of these entries to change the database setup:

• ORACLE_SID
• TEMPLATE_NAME
• CHARSET
• PDB_NAME
• LISTENER_NAME
• NUMBER_OF_PDBS
• CREATE_AS_CDB

(You can’t change ORACLE_HOME here to alter the database software install location—by the time this
script runs the database software is already installed.)

Not Quite That Easy!
Manual changes are a matter of editing the files. If the objective is something appropriate for
automation, we can apply edits with sed and parameterize scripts with values passed at run time. That
will work perfectly—you can change everything noted above, with the exception of ORACLE_SID.

To see why, let’s look at the code block that follows the environment variable settings:

	

Copyright © 2020 Viscosity North America, Inc. All rights reserved. 	

General exports and vars
export PATH=$ORACLE_HOME/bin:$PATH
LSNR=$ORACLE_HOME/bin/lsnrctl
SQLPLUS=$ORACLE_HOME/bin/sqlplus
DBCA=$ORACLE_HOME/bin/dbca
NETCA=$ORACLE_HOME/bin/netca
ORACLE_OWNER=oracle
RETVAL=0
CONFIG_NAME="oracledb_$ORACLE_SID-$ORACLE_VERSION.conf"
CONFIGURATION="/etc/sysconfig/$CONFIG_NAME"

Do you see it?

CONFIG_NAME (and CONFIGURATION) uses ORACLE_SID. If the SID is changed, a configuration file
with the correct name must exist under /etc/sysconfig as expected by the service script.
When using RPM installations to create Docker images, I create the configuration file from a template as
part of container startup. I also overwrite the default service script with a custom version and replace
the environment variables with boilerplate such as ###ORACLE_SID###. I then use sed to update the
environment settings with whatever values are passed to the docker run command.

Advanced Configuration Modifications
The configuration and service files combine to provide basic options for creating new databases. RPM
installation buries the mechanism for creating databases inside service automation and streamlines the
process. The mechanism itself is still the Database Configuration Assistant, but we don’t need to create
methods to interpret variables as we would if we called DBCA directly.

Code that’s very specific to Oracle remains separate from the automation. It’s not difficult to see how a
few lines can be substituted as part of a template to create databases in general, passing common
properties like database name and character set, and use the same process to provision databases from
multiple vendors; Oracle, MySQL, or others.

Extending DBCA Options
When the service script runs it passes values set in the script itself, alongside those it finds in the
configuration file, to DBCA. The call to DBCA looks like this:

	

Copyright © 2020 Viscosity North America, Inc. All rights reserved. 	

$SU -s /bin/bash $ORACLE_OWNER -c "$DBCA -silent -createDatabase \
 -gdbName $ORACLE_SID -templateName $TEMPLATE_NAME -characterSet $CHARSET \
 -createAsContainerDatabase $CREATE_AS_CDB -numberOfPDBs $NUMBER_OF_PDBS \
 -pdbName $PDB_NAME -createListener $LISTENER_NAME:$LISTENER_PORT \
 -datafileDestination $ORACLE_DATA_LOCATION -sid $ORACLE_SID \
 -autoGeneratePasswords -emConfiguration DBEXPRESS \
 -emExpressPort $EM_EXPRESS_PORT"

These don't represent all options available with DBCA. For a more complete list, let’s look at what’s in
the default response file under $ORACLE_HOME/assistants/dbca/dbca.rsp:

	

Copyright © 2020 Viscosity North America, Inc. All rights reserved. 	

grep -Ev "^#|^$" /opt/oracle/product/19c/dbhome_1/assistants/dbca/dbca.rsp
responseFileVersion=/oracle/assistants/rspfmt_dbca_response_schema_v19.0.0
gdbName=
sid=
databaseConfigType=
RACOneNodeServiceName=
policyManaged=
createServerPool=
serverPoolName=
cardinality=
force=
pqPoolName=
pqCardinality=
createAsContainerDatabase=
numberOfPDBs=
pdbName=
useLocalUndoForPDBs=
pdbAdminPassword=
nodelist=
templateName=
sysPassword=
systemPassword=
oracleHomeUserPassword=
emConfiguration=
emExpressPort=5500
runCVUChecks=
dbsnmpPassword=
omsHost=
omsPort=
emUser=
emPassword=
dvConfiguration=
dvUserName=
dvUserPassword=
dvAccountManagerName=
dvAccountManagerPassword=
olsConfiguration=
datafileJarLocation=
datafileDestination=
recoveryAreaDestination=
storageType=

	

Copyright © 2020 Viscosity North America, Inc. All rights reserved. 	

diskGroupName=
asmsnmpPassword=
recoveryGroupName=
characterSet=
nationalCharacterSet=
registerWithDirService=
dirServiceUserName=
dirServicePassword=
walletPassword=
listeners=
variablesFile=
variables=
initParams=
sampleSchema=
memoryPercentage=
databaseType=
automaticMemoryManagement=
totalMemory=

Theoretically, we can adapt the DBCA command in the service script to include any of those options. For
starters we can set the NLS character set with -nationalCharacterSet	or define initialization
parameters with -initParams.	
	
Since the service file calls DBCA to create the database, any and all options available from DBCA are
possible with an RPM-based installation—it’s just a matter of updating the DBCA command in the
service script to include the options we want!

The limitations of RPM installation, listed in the introduction, are a product of what Oracle chose to
include under the service script’s configure option. A relatively trivial change introduces all sorts of
possibilities! If you’re exploring this option, our recommendation is to update the DBCA command in the
script to read a response file, then create response files with parameters and values generated at run
time.

This allows us to create single instance, RAC, or RAC One Node databases; container databases with
multiple PDB; enable security options like Database Vault and Label Security; use ASM; and disable
AMM!

Changing Directories
If your environment requires Oracle components to be installed in specific directories different from
those used in the RPM installation, you can change them after the database software is installed.
Unfortunately, they can’t be altered as part of the installation itself. Packages embed directory paths,
file ownership, and permissions. For Oracle database software installations, files are written to the
system in an already-linked state and makes relining and running root scripts unnecessary.

	

Copyright © 2020 Viscosity North America, Inc. All rights reserved. 	

Once created, the Oracle Inventory and Oracle Home directories can be moved with a few commands.
After moving directories, make sure to update the service file at /etc/init.d to reflect these changes.

Move the Oracle Inventory
The default location of the RPM-based Oracle Inventory—/opt/oracle/oraInventory, beneath
ORACLE_BASE—oddly violates Oracle’s own recommendations:

The	recommended	value	for	the	inventory	directory	is	
/Oracle_base//../oraInventory,	or	one	level	above	the	Oracle	base	directory,	in	the	
oraInventory	subdirectory.	If	your	Oracle	base	directory	is	/u01/app/oracle,	then	the	
Oracle	inventory	directory	defaults	to	/u01/app/oraInventory.	

The following was used in the Docker build to change inventory locations:

mv "$OLD_LOC"/* "$NEW_LOC"/
find / -name oraInst.loc -exec sed -i -e \
 "s|^inventory_loc=.*$|inventory_loc=$NEW_LOC|g" {} \;

When changing Oracle inventory and home directories, move the inventory first! The inventory pointer
location is used when updating the Oracle Home.

Change the Oracle Home
As mentioned previously, the Oracle Home for 18c XE installations can’t be changed, because it lacks the
libraries needed to relink. However, the 19c database is fully functional and can be relocated using
Oracle built in utilities.

In the Docker work, Oracle Homes installed from RPM can be moved with the following code:

mv "$OLD_HOME"/* "$NEW_HOME"/
chown -R oracle:oinstall "$NEW_HOME"
rm -fr "$OLD_BASE"/product
sudo su - oracle -c "$NEW_HOME/perl/bin/perl \
 $NEW_HOME/clone/bin/clone.pl ORACLE_HOME=$NEW_HOME
ORACLE_BASE=$ORACLE_BASE \
 -defaultHomeName -invPtrLoc $NEW_HOME/oraInst.loc"

In 19c clone.pl is deprecated but still available, but may be de-supported in an upcoming release. For
now, the same method works to move Oracle Homes for versions 11g onward and avoids the need for
anything version-specific.

This method assumes the Oracle Base isn’t changing. To change the entire Oracle Base:

	

Copyright © 2020 Viscosity North America, Inc. All rights reserved. 	

mv "$OLD_BASE"/* "$NEW_BASE"/
chown -R oracle:oinstall "$NEW_BASE"
sudo su - oracle -c "$NEW_HOME/perl/bin/perl \
 $NEW_HOME/clone/bin/clone.pl ORACLE_HOME=$NEW_HOME
ORACLE_BASE=$NEW_BASE \
 -defaultHomeName -invPtrLoc $NEW_HOME/oraInst.loc"

Again, be sure to update the service script at /etc/init.d with the new paths for changed directories.

Apply Patches and RU
Package-based installation of Oracle 19c creates a fully-featured Oracle 19.3.0 Enterprise Edition
database. There’s nothing different about it besides the manner in which the software directories were
created, and it’s patched identically to a “normal” database.
After creating a new database environment from an RPM installation, it is recommended to apply
Release Updates and patches prior to creating any databases; it reduces steps. Creating a database after
patching creates a patched database. Patching after database creation requires stopping databases,
patching software, starting databases and running datapatch.

Update OPatch
As always, update OPatch with the latest version from My Oracle Support. For new software
installations, there is no point in backing up the OPatch directory; you can simply overwrite it with the
new version as part of building the environment:

sudo su - oracle -c "unzip -oq -d $ORACLE_HOME
$PATCH_DIR/p6880880*.zip"

From there it’s just a matter of applying the Release Update or patch. For building Docker images, the
following was used to process numbered patch directories:

	

Copyright © 2020 Viscosity North America, Inc. All rights reserved. 	

for patchdir in $(find "$PATCH_DIR"/* -type d -regex '.*\/[:digit:].+$' | \
 sed "s|/$||" | sort -n) # | grep -E "[0-9]{3}/" | sed "s|/$||" | sort -n)
 do cd "$patchdir"
 if ["$(find . -type f -name "./*.zip")"]
 then unzip -q ./*.zip
 chown -R oracle:oinstall .
 cd ./*/
 # Get the apply command from the README
 opatch_apply=$(grep -E "opatch .apply" README.* | sort | head -1 | awk
'{print $2}')
 opatch_apply=${opatch_apply:-apply}
 patchdir=$(pwd)
 # Apply the patch
 sudo su - oracle -c "$ORACLE_HOME/OPatch/opatch $opatch_apply -silent
$patchdir" || error "OPatch $opatch_apply for $patchdir failed"
 fi
done

This looks for patches in numeric subdirectories under $PATCH_DIR and loops over them in order. It
unzips the patch file and changes ownership, then navigates into the patch subdirectory. There, it looks
in the README for the apply method and runs OPatch in silent mode.

One of the sayings we have at Viscosity is our customer’s, “have four aces in their pocket”. Over the next
11 days, the talented staff at Viscosity along with our Oracle ACEs will address more Oracle Database
18c and 19c new features. Continue to join us next year, as we continue our Oracle Database 19c hands-
on-lab workshops.

Happy Holidays!

