
Copyright © 2020 Viscosity North America, Inc. All rights reserved.

On the Sixth Day of 18c/19c, Viscosity Gave to me…

Security

Technology Overview

Database: 18c / 19c

Company: Oracle Corporation

Topic: Security

Viscosity can help with any
of your Database Upgrade
needs

Viscosity has performed numerous
zero-downtime database migrations
and upgrades over the years and has
a proven track record with business
critical and mission critical databases.

Viscosity’s Database Migration &
Upgrade Services can plan, upgrade,
validate and migrate all database
content - quickly and effectively with
our automated approach and proven
methodology.

Learn more about how you can
maintain and maximize your
investments at viscosityna.com or
email us at hello@viscosityna.com.

www.viscosityna.com

December 15, 2020

One of the often underappreciated, but crucially important features of any database
management system is that of database security. The rationale is simple: the contents
of the database are among the highest value targets in an organization to a threat actor
and can contain a wealth of information including basic confidential employee
information, legally protected personally identifiable information or even proprietary
intellectual property of the organization. While a thorough treatise on properly
securing an Oracle database is beyond the scope of this article, Oracle 18c/19c does
provide some features that work towards inherently increasing database security by
reducing the attack surface.

The Problem

Historically speaking, Oracle has not differentiated between the idea of a user
account (accounts used to establish a connection to the database) and an
application owner/schema account (an owner of the collection of tables, indexes,
and other objects used to store the database data) except in a purely logical sense.
While certain accounts were used as the ownership accounts for these database
objects, they were identical to user accounts and each had their own password that
could be used to login to the account. Over the evolution of the Oracle RDBMS, the
number of these types of accounts has continued to grow and current releases
have in excess of 30+ individual, distinct accounts (not including those created by
third-party applications or individual sites for their own custom development).
Breaching one of these accounts meant complete control of the database objects
stored within that schema. Even worse, if the account had been setup without
adhering to the principle of least privilege (DBA role, elevated system privileges,
use of ANY privileges, etc.) then the impacts could be more far reaching, not
contained to only the impacted schema. Unfortunately, that scenario is far more
common than it should be.

Up until recently, the toolset to deal with this situation was limited to a handful of
solutions; such as restricting the password to a trusted administrator and/or setting
it to an incredibly complex password value, designed to thwart casual guesses.
However, none of these solutions removed the core issue, which was that the
schema was a login account that was still needed to make changes to the schema
objects, preventing it from being permanently locked. Moreover, password
protections at the database could be easily misconfigured to disable password
locking, password expiration, and password lockouts leading to accounts whose
passwords were set once and never changed – or even left at their well-
documented default values. These became well-known vulnerability points that
could be quietly attacked and used to gain an initial foothold in the database.

Copyright © 2020 Viscosity North America, Inc. All rights reserved.

The Solution

Beginning in Oracle 18c, database accounts may be setup as Schema Only accounts in addition to
traditional user accounts. The Schema Only account allow accounts to be created in the database which
do not have a password associated with them, and, thus, cannot be logged into. This is done by the use
of the NO AUTHENTICATION command syntax for the CREATE USER command and is able to be done for
both administrative and non-administrative accounts (but only in database instances, not ASM
instances).

Consider the following example:

SQL> create user normal_user identified by C0mpl3x#Passw0rd;

User created.

SQL> create user hr_schema no authentication;

User created.

SQL> set lines 1024
SQL> col username format a20
SQL> select username,
 2 account_status,
 3 authentication_type
 4 from dba_users
 5 where username in ('NORMAL_USER','HR_SCHEMA')
 6 order by 1
 7 /

USERNAME ACCOUNT_STATUS AUTHENTI
-------------------- -------------------------------- --------
HR_SCHEMA OPEN NONE
NORMAL_USER OPEN PASSWORD

Above, two user accounts have been created: normal_user which can be authenticated to using the
specified password to logon to the database, and hr_schema which is created as a user account on the
database, but has no associated password (a Schema Only account). This configuration can be confirmed
by viewing the AUTHENTICATION_TYPE column of DBA_USERS, which shows that normal_user has a
traditional PASSWORD authentication mechanism, while hr_schema has NONE associated with it.

Without a password associated with the account, the hr_schema account serves only as a repository to
contain databases objects (for example) and cannot be logged onto directly.

Copyright © 2020 Viscosity North America, Inc. All rights reserved.

Of course, schema accounts do not (and never have) existed in a vacuum, and database objects have to
be modified, indexes have to built/rebuilt, and stored objects have to be created. Obviously, this can be
done by someone using a variety of DBA or ANY privileges, but those
privileges have the potential for abuse; as they are not narrowly focused for proper segregation of
duties and principles of least privilege used. Thankfully, there are better tools to accomplish this while
restricting access to only the specific schema.

Oracle has had the ability to use a proxy connection for several versions now, and so it’s a trivial matter
to setup our normal_user account to login to the hr_schema account via this mechanism.

SQL> alter user hr_schema grant connect through normal_user;

User altered.

SQL> connect normal_user[hr_schema]/C0mpl3x#Passw0rd@PDB1
Connected.
SQL> sho user
USER is "HR_SCHEMA"

This is conceptually similar to the sudo utility on a Unix/Linux system. The ALTER statement modifies the
schema only account (hr_schema) and allows a specified user account (normal_user) to connect, by
authenticating with their own individual password. In this case, the CONNECT command establishes a
login to the bracketed target account name (hr_schema), by authenticating to the specified account
(normal_user) as usual. However, using this specific syntax, when a connection is established to the
database, does so as the schema account and not the standard user account (as demonstrated with the
SHO USER command).

The ability to make this connection can also be removed by changing the GRANT in the aforementioned
command to a REVOKE:

SQL> alter user hr_schema revoke connect through normal_user;

User altered.

However, what about specific cases in which direct access is needed to make schema changes, because
proxy authentication is not viable? In those cases, the schema only account can be temporarily set to a
password authenticated account, and then converted back to schema only account once the work is
completed.

Copyright © 2020 Viscosity North America, Inc. All rights reserved.

SQL> alter user hr_schema identified by T3mp0rary#ComplexPassw0rd;

User altered.

SQL> set lines 1024
SQL> col username format a20
SQL> select username,
 2 account_status,
 3 authentication_type
 4 from dba_users
 5 where username in ('NORMAL_USER','HR_SCHEMA')
 6 order by 1
 7 /

USERNAME ACCOUNT_STATUS AUTHENTI
-------------------- -------------------------------- --------
HR_SCHEMA OPEN PASSWORD
NORMAL_USER OPEN PASSWORD

SQL> alter user hr_schema no authentication;

User altered.

SQL> set lines 1024
SQL> col username format a20
SQL> select username,
 2 account_status,
 3 authentication_type
 4 from dba_users
 5 where username in ('NORMAL_USER','HR_SCHEMA')
 6 order by 1
 7 /

USERNAME ACCOUNT_STATUS AUTHENTI
-------------------- -------------------------------- --------
HR_SCHEMA OPEN NONE
NORMAL_USER OPEN PASSWORD

Copyright © 2020 Viscosity North America, Inc. All rights reserved.

For Oracle 19c, a few further enhancements of the Schema Only accounts have also been made:

• Most of the accounts furnished with the Oracle database (ORACLE_MAINTAINED=’Y’) have been
changed to use Schema Only accounts. In previous versions, these accounts were still password
managed accounts.

[Oracle 18c]
SQL> select authentication_type, count(*)
 2 from dba_users
 3 where oracle_maintained='Y'
 4 group by authentication_type
 5 order by 1
 6 /

AUTHENTI COUNT(*)
-------- ----------
NONE 5
PASSWORD 30

[Oracle 19c]
SQL> select authentication_type, count(*)
 2 from dba_users
 3 where oracle_maintained='Y'
 4 group by authentication_type
 5 order by 1
 6 /

AUTHENTI COUNT(*)
-------- ----------
NONE 31
PASSWORD 5

• Prior to Oracle 19c, it was not possible to convert accounts with administrative privileges (those

stored in the password file – SYSDBA, SYSOPER, SYSDG, etc) to Schema Only accounts. However,
with Oracle 19c that is now an option.

Copyright © 2020 Viscosity North America, Inc. All rights reserved.

[Oracle 18c]
SQL> select username, sysdg from v$pwfile_users where username =
'SYSDG';

USERNAME SYSDG
---------- -----
SYSDG TRUE

SQL> select username, authentication_type from dba_users where
username = 'SYSDG';

USERNAME AUTHENTI
---------- --------
SYSDG PASSWORD

SQL> alter user sysdg no authentication;
alter user sysdg no authentication
*
ERROR at line 1:
ORA-40367: An Administrative user cannot be altered to have no
authentication type.

[Oracle 19c]
SQL> select username, sysdg from v$pwfile_users where username =
'SYSDG';

USERNAME SYSDG
---------- -----
SYSDG TRUE

SQL> select username, authentication_type from dba_users where
username = 'SYSDG';

USERNAME AUTHENTI
---------- --------
SYSDG PASSWORD

SQL> alter user sysdg no authentication;

User altered.

Copyright © 2020 Viscosity North America, Inc. All rights reserved.

SQL> select username, authentication_type from dba_users where
username = 'SYSDG';

USERNAME AUTHENTI
---------- --------
SYSDG NONE

SQL> select username, sysdg from v$pwfile_users where username =
'SYSDG';

USERNAME SYSDG
---------- -----
SYSDG TRUE

Considerations for Upgrades

One thing to keep in mind during an Oracle 19c upgrade is the status of the default Oracle accounts. Any
of these accounts which are in an EXPIRED and LOCKED status will be converted to a Schema Only
account at the end of the upgrade process. This can be avoided by simply changing the password on the
default accounts to a sufficiently strong password. Before the upgrade starts or corrective actions begin,
convert the account back to password authentication once the upgrade has been completed.

Summary

The proliferation of database schema accounts which serve only to hold database objects has always
represented a potential vulnerability and area of exposure for Oracle databases. Now, by providing the
ability to effectively distinguish between types of accounts (user login and schema), Oracle has taken a
huge step forward in improving the security posture of one of the customer’s most critical assets. While
not as flashy as some other features, it represents a welcome evolution for long-time database
administrators who have long had to manage passwords for an increasing number of accounts that were
seldom (if ever) used for purposes other than object ownership.

One of the sayings we have at Viscosity is our customer’s, “have four aces in their pocket”. Over the next
6 days, the talented staff at Viscosity along with our Oracle ACEs will address more Oracle Database 18c
and 19c new features. Continue to join us next year, as we continue our Oracle Database 19c hands-on-
lab workshops.

Happy Holidays!

